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Abstract: Climate change and global warming are significantly affected by carbon emissions that
arise from the burning of fossil fuels, specifically coal, oil, and gas. Accurate prices are essential for
the purposes of measuring, capturing, storing, and trading in carbon emissions at regional, national,
and international levels, especially as carbon emissions can be taxed appropriately when the price
is known and widely accepted. This paper uses a novel Capital (K), Labor (L), Energy (E) and
Materials (M) (or KLEM) production function approach to calculate the latent carbon emission prices,
where carbon emission is the output and capital (K), labor (L), energy (E) (or electricity), and materials
(M) are the inputs for the production process. The variables K, L, and M are essentially fixed on
a daily or monthly basis, whereas E can be changed more frequently, such as daily or monthly, so that
changes in carbon emissions depend on changes in E. If prices are assumed to depend on the average
cost pricing, the prices of carbon emissions and energy may be approximated by an energy production
model with a constant factor of proportionality, so that carbon emission prices are a function of energy
prices. Using this novel modeling approach, this paper estimates the carbon emission prices for
Japan using seasonally adjusted and unadjusted monthly data on the volumes of carbon emissions
and energy, as well as energy prices, from December 2008 to April 2018. The econometric models
show that, as sources of electricity, the logarithms of coal and oil, though not Liquefied Natural Gas
(LNG,) are statistically significant in explaining the logarithm of carbon emissions, with oil being
more significant than coal. The models generally displayed a high power in predicting the latent
prices of carbon emissions. The usefulness of the empirical findings suggest that the methodology
can also be applied for other countries where carbon emission prices are latent.

Keywords: latent carbon emission prices; fossil fuels; energy; KLEM production function;
average cost pricing; monthly seasonally adjusted data; unadjusted data

JEL Classification: C22; C32; C58; G12; Q35; Q48; Q54

1. Introduction

Climate change and global warming are two of the most important environmental issues presently
facing the international community. Global warming is typically defined as the observed century-scale
rise in the average temperature of the Earth’s climate system and its related effects, while climate
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change refers to change in the statistical distribution of weather patterns, specifically average weather
conditions, over an extended period, such as a century. Neither climate change nor global warming
refer to changing weather conditions on a daily basis (see [1] Allen and McAleer (2018)).

Both climate change and global warming are significantly affected by carbon emissions that
arise from the burning of fossil fuels, specifically coal, oil, and gas. One of the major environmental
challenges of the climate policy of the European Union Emissions Trading Scheme (or System) is the
reduction and mitigation of greenhouse gas emissions by capturing and storing carbon emissions.

Although the clear leader in the battle to reduce and mitigate the effects of carbon emissions is
the European Union, China has also started to mitigate the effects of greenhouse gases through the
development of domestic regional carbon emission trading markets, with the goal of extending it
to the national level in the near future. The creation of such markets that trade in carbon emissions
is intended to establish prices that can be used to buy and sell carbon emissions, and to reduce the
harmful effects of such emissions on the social and physical environment.

Accurate prices are essential for the purposes of measuring, capturing, storing, and trading in
carbon emissions at the regional, national, and international levels, especially as carbon emissions can
be taxed appropriately when the price is known and widely accepted. In the absence of an active
trading market for carbon emissions, the prices are typically decided through arbitrary administrative
deliberations, and hence are not efficient or even necessarily accurate. In this sense, carbon emission
prices are latent.

The purpose of this paper is to price the latent carbon prices through a novel econometric approach
that can be used to calculate realized latent prices of carbon emissions as a function of capital (K), labor
(L), energy (E) (that is, electricity), and materials (M) inputs. The novelty is in extending the KLEM
production function to the multivariate setting, modeling latent carbon emission prices, and providing
a novel method of estimating monthly latent carbon emission prices that are based on the observed
monthly prices of alternative forms of energy using innovative econometric time series models.

The inputs K, L, and M are typically fixed at a monthly observation interval, and are not readily
available on any well-known website, whereas E can be changed daily, so that changes in carbon
emissions will depend on changes in E. If prices are assumed to depend on the average cost pricing,
the prices of carbon emissions and energy may be approximated by an energy production model with
a constant factor of proportionality, so that carbon emission prices are a function of energy prices.

Given the relationship between the prices of carbon emissions and energy, econometric models of
the latent carbon emission prices are specified, estimated, evaluated, and used for forecasting carbon
emissions prices for Japan, based on monthly data from December 2008 to April 2018. The econometric
models will show that, as sources of electricity, the logarithms of coal and oil, though not LNG, as well
as a deterministic time trend and a tax change dummy variable, are statistically significant in explaining
the logarithm of carbon emissions, with oil being more significant than coal.

The plan of the remainder of the paper is as follows. A review of the literature on pricing carbon
emissions for the European Union, and at the regional and national levels for China, is given in
Section 2. Section 3 discusses the KLEM production function that obtains prices for the output of carbon
emissions as a function of the inputs of capital, labor, energy (or electricity), and materials. The formal
models of latent carbon emission prices are discussed in Section 4, estimation of the models is presented
in Section 5, the monthly data and diagnostic checks are analyzed in Section 6, the empirical estimates
and analysis are evaluated in Section 7, and some concluding remarks are given in Section 8.

Proof of the derivation of the correct standard errors for valid statistical inference for realized
latent carbon emissions and the ranking of important underlying factors, a discussion on the theoretical
structure for latent endogenous and exogenous variables, and extensions to more complicated decision
strategies, are given in the Appendix A.



www.manaraa.com

Energies 2019, 12, 4222 3 of 21

2. Literature Review

Much of the research literature on pricing carbon emissions in recent years has concentrated
on Europe and China. The European Union Emissions Trading Scheme established the world’s
first greenhouse gas emissions trading scheme in 2005, and remains the largest and most influential
organization mitigating the effects of global warming and climate change.

In the sparse literature for Europe, most of which has been based on the European Union Emissions
Trading Scheme (EUETS), [2] Daskalakis and Mrkellos (2009) developed a framework for future pricing
and hedging, and examined data from EEX, Nord Pool, and Powernext, to analyze whether electricity
risk premia were affected by the prices of emission allowances. [3] Daskalakis et al. (2009) provided
evidence from modeling the prices of CO2 emissions allowances and derivatives using European
Trading Scheme data.

More recently, [4] Bushnell et al. (2013) examined profiting from regulation, based on European
carbon market data. [5] Oestreich and Tsiakas (2015) analyzed carbon emissions and stock returns using
EUETS data. Additionally, [6] Martin et al. (2016) examined the impacts of the EUETS on regulated
firms for ten years from inception.

China’s market for national carbon emissions was established at a later stage than in Europe,
and has been progressing steadily. The development of such markets since their inception in China in
2013 has not necessarily been based on competitive market principles. The National Government in
Beijing has made it clear that the regional markets are a first step in the development of a national
carbon emission pricing scheme. Just as the market for carbon emissions trading is presently at
a formative stage in China, the academic theoretical and empirical research on the emerging regional
and national carbon emissions pricing markets is also at a development stage.

A review of the admittedly sparse literature on the prices of carbon emissions in Europe and
China, as well as a comprehensive analysis regarding the availability of price data at the domestic
regional level, is analyzed in [7,8] Chang et al. (2018, 2019). Following earlier work, the authors discuss
a number of developments in China since 2005. [9] Chen (2005) evaluated the costs associated with
mitigating carbon emissions. [10] Gregg et al. (2008) analyzed the carbon emissions patterns associated
with fossil fuel consumption and cement production. Moreover, [11] Li and Colombier (2009) evaluated
carbon emissions and energy efficiency. Using a multivariate modeling approach, [12] Chang (2010)
developed a multivariate causality test of various combinations of carbon dioxide emissions, energy
consumption, and economic growth.

In more recent years, there have been analyses of interactions between China and one or more
other regions. For example, [13] Nam et al. (2014) compared the synergy between China and the USA
associated with pollution and carbon emissions controls. For China alone, [14] Zhang et al. (2014)
considered the effects of emissions trading on progress and future prospects, [15] Zhang et al. (2014) used
the Shapley value to analyze carbon emissions quotas across regions, [16] Liu et al. (2015) reviewed
trading in carbon emissions and future challenges, [17] Tang et al. (2015) evaluated the trading scheme
for carbon emissions using a multi-agent-based model, and [18] Zhang (2015) reformulated a strategy
for low-carbon green growth. [19] Xiong et al. (2017) provided a comparison of China’s carbon trading
allowance scheme and related schemes in the EU and California.

There seems to be even less research on pricing carbon emissions at an international
level. [20] Zhang and Sun (2016) applied a Full BEKK multivariate conditional volatility model to
analyze the time-varying covariances and the associated dynamic spillovers between the respective
markets for Euro carbon and fossil fuel (for caveats regarding the Full BEKK model, particularly
regarding the lack of mathematical regularity conditions, invertibility, the absence of a likelihood
function, and hence the lack of valid asymptotic statistical properties, see [21] Chang and McAleer
(2019)) [22]. Chang et al. (2017) and [21] Chang and McAleer (2019) analyzed the novel issues of
volatility spillovers and Granger causality on the basis of daily data for the futures prices of EU carbon
emissions, spot prices of US carbon emissions, and spot and future prices of oil and coal.
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Interesting recent research has been undertaken on analyses of price and volatility from the
perspective of derivative markets and alternative volatility models, such as the price impact, trading
volume and volatilities associated with mission permits and the announcement of realized emissions
in [23] Hitzemann, Uhrig-Homburg, and Ehrhart (2015); a Bayesian approach to the stochastic volatility
of future prices of emission allowances in [24] Kim, Park, and Ryu (2017); and the empirical performance
of reduced form models for emission permit prices in [25] Hitzemann and Uhrig-Homburg (2019).

As stated above, there seems to have been no published research on pricing carbon emissions in
Japan. The existing published research seems to have primarily focused on Europe and, very recently,
China. For these reasons, this paper makes a novel contribution to the pricing of carbon emissions for
Japan. The usefulness of the empirical findings suggests that the methodology can also be applied for
other countries where carbon emission prices are latent.

3. KLEMS Production Function for Carbon Emissions and Energy

Inputs are required to produce outputs, and the relationship is captured in a production function.
A relatively broad specification is the KLEMS production function ([26] OECD, 2001), which uses
capital (K), labor (L), energy (E), materials (M), and services (S) as the inputs for the production process.
The function captures the most widely-used inputs for producing the output. Typically, the most widely
observable input is energy, which is based on the use of electricity, whereas the services associated
with a specific output are typically difficult to observe.

As a special case of KLEMS, consider the KLEM production function (see, for example, [27] Lecca et al.,
2011) that is given as

CE = AKa1La2Ea3Ma4exp(u), (1)

where CE denotes the production of the output of carbon emissions; capital (K), labor (L), energy or
electricity (E), and materials (M) are the inputs; A is a constant; for simplicity, the partial production
parameters are assumed to satisfy constant returns to scale, that is, a1 + a2 + a3 + a4 = 1 (as in the
Cobb-Douglas production function); and the random error term is assumed to be u ∼ iid(0, 1).

In practice, the output CE and input E may be observed at daily or monthly data frequencies,
whereas the inputs K, L, and M are generally fixed at much lower data frequencies, such as one year.
Consequently, when the data are observed at monthly frequencies, as in this paper, CE and E may be
assumed to be proportional, with the random factor of proportionality given by

k = AKa1La2Ma4exp(u). (2)

It is worth noting that k is not restricted in its range, such as (0, 1). As k has a unit of measurement,
k can take any value, depending on the units of measure of the variables, such as

CE = kEa3 (3a)

or
log(CE) = log(k) + a3 log(E), (3b)

where a3 is a scalar. If it is assumed that output prices are set according to an average cost pricing rule
(see [28] Chang et al. (2018)), the prices of CE and E may be approximated by a model with a constant
factor of proportionality. Let this relationship be given as

PCE = kPE, (4)

where PCE is the price of CE, and PE is the price of energy (such as electricity), such that k in Equation (4)
is the constant factor of proportionality. In practice, k may be known in advance or may be determined
empirically using appropriate modeling techniques. [28] Chang et al. (2018) considered estimating
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k through the use of Equations (3b) and (4). The estimation of PCE through the use of econometric
models, and acknowledging the presence of measurement errors, will be developed in the next section.

4. Modeling Latent Carbon Emission Prices

The definitional relationship for a random variable, Y, can be seen in Equation (5):

Y = Y* + measurement error, (5)

where Y is the measured value of the random variable, which is subject to measurement error, and Y*
is the true value of the random variable, with no measurement error, for which the following four
relationships are possible:

(i) Y = PCE, Y∗ = P∗CE;

(ii) Y = PCE, Y∗ = P∗E;
(iii) Y = PE, Y∗ = P∗E;
(iv) Y = PE, Y∗ = P∗CE.

Here, PCE and P∗CE denote the (possibly) observed prices of carbon emissions and their
underlying true prices, respectively, and PE and P∗E denote the observed and underlying true prices of
energy, respectively.

In cases (i) and (ii), the price of carbon emissions is not available, together with the true underlying
prices of carbon emissions and energy, respectively. case (iii) is not of particular interest as it relates to the
observed and true underlying prices of energy, respectively. In case (iv), the price of energy is available, but
the true underlying price of carbon emissions is not. Therefore, this paper is concerned with case (iv).

The remainder of the paper uses a novel econometric model to calculate the latent prices of carbon
emissions, as will be discussed below. The approach has been used in the literature to calculate latent
variables, and this paper is the first to use the methodological approach to calculate latent carbon
emission prices.

For the sake of argument, in case (iv), if the price of energy is stationary, PE can be regressed on
a set of observable variables using Ordinary Least Squares (OLS), as given in Equation (6):

PE = b0 + b1Z1 + b2Z2 + b3Z3 + error, (6)

to yield estimated fitted values, as given in Equation (7):

P̂E = b̂0 + b̂1Z1 + b̂2Z2 + b̂3Z3 =
1
k

P̂∗CE, (7)

where b̂i denotes the OLS estimates of the unknown parameters bi (i = 0, 1, 2, 3), and P̂E denotes the
estimated fitted values of energy prices from Equation (6), which are equivalent to the estimated fitted
values of carbon emissions, (P̂∗CE), adjusted by the factor (1/k) (see Equation (4)), where k may be known
in advance or may be determined empirically.

If energy prices are nonstationary rather than stationary, the price model for energy in Equation (6)
can be estimated using a cointegrating relationship or a vector autoregressive distributed lag model to
accommodate the nonstationarity. Alternatively, prices can be transformed into log differences in prices,
which are equivalent to the rate of growth in prices, and then estimated by OLS (in empirical finance,
log differences in prices are referred to as rates of return), which would be based on stationary processes.

5. Estimating Latent Carbon Emission Prices

This section describes a novel method of estimating monthly latent carbon emissions prices for
Japan that are based on the observed monthly prices of alternative forms of energy and the models
presented in the previous section.
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Monthly prices (p) and volumes (quantities, q) of the following energy variables are typically
available in a variety of energy databases, where almost ethanol refers to bio-ethanol:

(1) Volume of carbon emissions;
(2) Prices and volume of electricity;
(3) Prices and volume of oil;
(4) Prices and volume of crude coal;
(5) Prices and volume of natural gas;
(6) Prices and volume of nuclear energy;
(7) Prices and volume of solar energy;
(8) Prices and volume of wind energy;
(9) Prices and volume of hydro energy;
(10) Prices and volume of wave energy;
(11) Prices and volume of bio-mass;
(12) Prices and volume of ethanol;
(13) Prices and volume of bio-ethanol.

In what follows, the models presented in the previous section will be estimated using the available
price and volume data to obtain estimated fitted latent prices of carbon emissions. It is assumed that
there is a known expected relationship between carbon emissions and the generation of electricity
using the data in cases (2)–(12) above. This is based on applied engineering practice and structural
form modeling, as presented in the previous section, as follows:

p0q0 = kp1q1 exp(u) (8)

or equivalently as
log(p0q0) = log(k) + log(p1q1) + u, (9)

where k is assumed to be a known factor of proportionality, and u is assumed to be a random
measurement error, possibly independently and identically distributed, with a mean of 0 and constant
variance.

Equation (8) relates the unknown price and known quantity of carbon emissions to the known
price and known quantity of energy (or electricity), which confirms that the resulting price equation
directly refers to carbon emissions. Equation (9) is the logarithmic equivalent of Equation (8).

Let pq = e (expenditure), with k = 1, without a loss of generality, so that Equation (8) becomes

log(e0) = log(e1) + u. (10)

It follows that
E[log(e0)]= E[ log(e1)] (11)

as E(u) = 0, such that the estimated fitted value of Equation (10) is given as

̂log(e0) = ̂log(e1). (12)

A regression of log(e1) on log(e2), . . . , log(e12) gives

log(e1) = c + δ2 log(e2) + . . .+ δ12 log(e12) + error, (13)

for which the estimated fitted value of log(e1) is given as

̂log(e1) = ĉ + δ̂2 log(e2) + . . .+ δ̂12 log(e12), (14)
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where ĉ, δ̂2 , . . . , δ̂12 are the OLS estimates of c, δ2, . . . , δ12, respectively.
Recalling Equation (11), it follows that

̂log(e0) = ̂log(e1) = ĉ + δ̂2 log(e2) + . . .+ δ̂12 log(e12), (15)

which gives an “optimal” estimate of log(e0).

As log(e0) = log(p0q0) and l̂og e0 = ̂log(p0) + log q0, the prices of carbon emissions can be
“optimally” calculated as

̂log(p0) = ̂log(e0) − log(q0). (16)

Equation (16) gives the estimated fitted value, l̂og p0, as the “optimal” estimate of carbon emission
prices as it uses valid statistical techniques that are efficient and optimal.

This novel method would seem to be the first to calculate carbon emissions prices in theory, as
well as in practice, using monthly data for Japan.

Further to the above discussion, if data were available for p0, the price of energy (or electricity),
as well as prices on some renewable (Z1, say) and nonrenewable (Z2, say) energy inputs, we could
compare whether Z1 jointly was more or less significant than Z2 in explaining p0.

The Japanese Government imposes energy taxes on industry, in particular, as well as on households.
The use of government data is crucial for consumers and businesses that use energy, as they are
expected to pay carbon taxes as users of energy. This is not a financial product, but an application of
optimal carbon tax policies.

6. Monthly Data and Diagnostic Checks

The empirical analysis uses a monthly sample period from December 2008 to April 2018 for Japan,
where carbon emission prices have not yet been calculated by any government agency or research
institute. The definitions of the variables are given in Table 1 as the volume of seasonally unadjusted and
seasonally adjusted (using X12) values of coal, LNG, petroleum, electricity, carbon emissions, the spot
electricity price, the total transaction volume of electricity, and the price of electricity that represents
the price of energy. The sources of the data are the Trade Statistics of Japan, Ministry of Finance,
Government of Japan; the Japan Metrological Agency; and the Japan Electricity Power eXchange.

Table 1. Definition of variables.

Variable Definition Source

Coal Value of coal
(Import value of coal) Trade Statistics of Japan, Ministry of Finance

CoalSA Value of coal seasonally adjusted by X12

LNG Value of LNG
(Import value of LNG) Trade Statistics of Japan, Ministry of Finance

LNGSA Seasonally adjusted value of LNG

Oil Value of petroleum
(Import value of petroleum) Trade Statistics of Japan, Ministry of Finance

OilSA Value of petroleum seasonally adjusted by X12

E Value of electricity obtained by P_E × E vol

ESA Value of electricity seasonally adjusted by X12

CE Volume of carbon emission (ppm)
Average of observations Japan Metrological Agency

CESA Volume of carbon seasonally adjusted by X12

PE
Spot electricity price

(Day ahead, 24 h) Japan Electricity Power eXchange

Evol Total transaction volume of electricity Japan Electricity Power eXchange

Evol,SA Total transaction volume of electricity seasonally adjusted by X12

Note: The sample period is monthly from December 2008 to April 2018.



www.manaraa.com

Energies 2019, 12, 4222 8 of 21

Prior to econometric estimation, the seasonally unadjusted and adjusted volumes of the logarithms
of electricity, coal, oil, and LNG were tested for unit roots, for both levels and first differences of the
variables, using the non-parametric Phillips-Perron (PP) test of stationarity to ensure that asymptotic
theory was valid for the purposes of drawing statistical inferences (see [29] Phillips and Perron (1979)).
The test of the null hypothesis that a time series is integrated by an order of 1 is robust to unspecified
autocorrelation and heteroscedasticity in the errors of the auxiliary test equation.

The PP tests of the logarithms of the levels and first differences of the seasonally unadjusted and
adjusted volumes of electricity, coal, oil, and LNG in Table 2 were conducted using a constant term
with a deterministic trend in order to provide alternative simulated critical values of the non-standard
test. OLS was used to obtain the estimator of the residual spectrum at a frequency of zero. The PP
test detects unit roots of the logarithmic levels of the variables at all reasonable levels of significance,
but rejects the null hypothesis of unit roots in logarithmic first differences, so that the log differences of
the data are stationary.

Table 2. Phillips-Perron unit root tests.

(a) Levels

Variable Test Statistic p-value

log(E) −2.320 0.420
log(E) log(E)SA −1.209 0.904

log(Coal) −3.309 0.070
log(Coal)SA −2.727 0.228

log(Oil) −2.541 0.308
log(Oil)SA −2.069 0.557
log(LNG) −2.166 0.504

log(LNG)SA −1.321 0.878

Notes: SA denotes a seasonally adjusted variable. The auxiliary regression included a constant term and time
trend. OLS was used to obtain the estimator of the residual spectrum at a frequency of zero.

(b) First Differences

Variable Test Statistic p-value

∆ log(E) −11.862 0.000
∆ log(E)SA −10.960 0.000
∆ log(Coal) −15.262 0.000

∆ log(Coal)SA −14.411 0.000
∆ log(Oil) −12.241 0.000

∆ log(Oil)SA −12.639 0.000
∆ log(LNG) −32.051 0.000

∆ log(LNG)SA −11.336 0.000

Notes: SA denotes a seasonally adjusted variable. The auxiliary regression included a constant term.
The number of lags for the auxiliary regression was determined by the Akaike Information Criterion (AIC).
Ordinary Least Squares (OLS) was used to obtain the estimator of the residual spectrum at a frequency of zero.

The correlations in the logarithmic levels of the seasonally unadjusted and adjusted data are shown
in Table 3(a), with the corresponding correlations in the logarithmic first differences of the seasonally
unadjusted and adjusted data shown in Table 3(b). The highest correlations for the logarithmic levels
of the seasonally unadjusted and adjusted data are between oil and LNG, with surprisingly close
values of 0.73 and 0.737, respectively. The highest correlations for the logarithmic first differences of
the seasonally unadjusted and adjusted data are quite different, with the highest correlation for the
former being between oil and LNG at 0.445, and at a much lower 0.267 for coal and oil, as well as for
coal and LNG.
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Table 3. (a) Correlation: Levels. (b) Correlation: First differences.

(a) Seasonally unadjusted data

log(E) log(Coal) log(Oil) log(LNG)

log(E) 1.000 0.159 −0.008 0.379
log(Coal) 0.159 1.000 0.317 0.341
log(Oil) −0.008 0.317 1.000 0.730

log(LNG) 0.379 0.341 0.730 1.000

Seasonally adjusted data

log(E)SA log(Coal)SA log(Oil)SA log(LNG)SA

log(E)SA 1.000 0.146 −0.008 0.375
log(Coal)SA 0.146 1.000 0.294 0.295
log(Oil)SA −0.008 0.294 1.000 0.737

log(LNG)SA 0.375 0.295 0.737 1.000

(b) Seasonally unadjusted data

∆log(E) ∆log(Coal) ∆log(Oil) ∆log(LNG)

∆ log(E) 1.000 0.066 0.125 0.211
∆ log(Coal) 0.066 1.000 0.299 0.401
∆ log(Oil) 0.125 0.299 1.000 0.445

∆ log(LNG) 0.211 0.401 0.445 1.000

Seasonally adjusted data

∆log(E)SA ∆log(Coal)SA ∆log(Oil)SA ∆log(LNG)SA

∆ log(E)SA 1.000 0.043 0.177 0.038
∆ log(Coal)SA 0.043 1.000 0.267 0.267
∆ log(Oil)SA 0.177 0.267 1.000 0.200

∆ log(LNG)SA 0.038 0.267 0.200 1.000

The [30] Johansen (1991) Trace and Maximum Eigenvalue tests of the number of cointegrating
vectors for the seasonally unadjusted and adjusted values of coal, LNG, oil, and electricity are presented
in Table 4. The null hypothesis of no cointegration (that is, R = 0) can be rejected at the 5% level
of significance using both tests for the combination of logarithms of the seasonally unadjusted and
adjusted volumes of coal, LNG, oil, and electricity.

Table 4. Johansen Trace and Maximum Eigenvalue tests of cointegrating vectors.

Trace or Maximum Eigenvalue Test Number of
Cointegrating Vectors

Test Statistic
(p-Value)

Trace
log(Coal), log(LNG), log(Oil), and log(E) R = 0 66.725

(0.028)

Maximum Eigenvalue
log(Coal), log(LNG), log(Oil), and log(E) R = 0 37.215

(0.011)

Trace
log(Coal)SA, log(LNG)SA, log(Oil)SA, and log(E)SA

R = 0 77.143
(0.003)

Maximum Eigenvalue
log(Coal)SA, log(LNG)SA, log(Oil)SA, and log(E)SA

R = 0 40.017
(0.004)

Notes: SA denotes a seasonally adjusted variable. R is the number of cointegrating vectors.
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7. Empirical Estimates and Analysis

The results of the PP unit root tests and Johansen tests of the number of cointegrating vectors
in the previous section led to fully-modified OLS estimation ([31] Phillips and Hansen, 1990) of the
cointegrating regressions, presented in Table 5.

Table 5. Cointegrating regression (fully-modified OLS) for carbon emissions. Case 1: Seasonally
unadjusted data. Case 2: Seasonally adjusted data.

Case 1 Case 2

Constant −3.180
(0.409)

−4.141
(0.253)

log(Coal) 0.410
(0.056) *

log(Coal)SA
0.451

(0.025) **

log(LNG)
0.215

(0.210)

log(LNG)SA
0.265

(0.125)

log(Oil) 0.612
(0.001) ***

log(Oil)SA
0.573

(0.002) ***

Trend 0.027
(0.000) ***

0.026
(0.000) ***

Dummy 0.669
(0.000) ***

0.772
(0.000) ***

Adjusted R2 0.943 0.958

Notes: ***, **, and * denote statistical significance at the 1%, 5%, and 10% levels, respectively. Numbers in parentheses
indicate p-values of the t-tests. The dummy variable, which was introduced to accommodate the influence of
increases in electricity prices on May 2017 arising from tax changes in Japan, equals 0 before September 2017, and 1
after September 2017.

Two cases are considered, as follows:

Case 1: Seasonally unadjusted data, with a deterministic trend and dummy variable;
Case 2: Seasonally adjusted data, with a deterministic trend and dummy variable.

The dummy variable, which was introduced to accommodate the influence of increases in
electricity prices on May 2017 arising from tax changes in Japan, equals 0 before September 2017,
and 1 after September 2017.

For both seasonally unadjusted and seasonally adjusted data, that is, Cases 1 and 2, the logarithms
of coal and oil, as well as the deterministic time trend and the tax change dummy variable, are
statistically significant in explaining the logarithm of carbon emissions, with oil being more significant
than coal. The logarithm of LNG is not statistically significant at any conventional level of significance
in explaining the logarithm of carbon emissions in either Case 1 or Case 2. The adjusted R2 values are
reasonably high, at 0.943 and 0.958 for Cases 1 and 2, respectively, which suggests that the models are
quite successful in explaining the logarithm of carbon emissions using both seasonally unadjusted and
seasonally adjusted data.

The forecasts of log(E) for seasonally unadjusted and seasonally adjusted data are shown in
Figure 1a,b, respectively, where two standard errors in each figure provide the 95% confidence intervals.
In each case, there were noticeable falls in the forecasts of the logarithm of electricity from mid-2015
through to early-2016, and substantial rises toward the end of 2017.
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Figure 2. (a) Predicted carbon emission prices. ̂log
(
CEp
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= l̂og(E) − log(Evol). ĈEp =
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l̂og(E) − log(Evol)
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. (b) Predicted carbon emission prices (SA). ̂log

(
CEp,SA

)
= ̂log(ESA) −

log
(
Evol,SA

)
. ĈEp,SA = exp

[
̂log(ESA) − log(Evol, SA)

]
.

The predicted values are based on the formulae for the logarithmic values presented in
Equation (16), with the predicted carbon emissions prices having been obtained using the exponential
function for the seasonally unadjusted data, as follows:

̂log
(
CEp

)
= l̂og(E) − log(Evol) (17a)

ĈEp = exp
[
l̂og(E) − log(Evol)

]
(17b)

and for the seasonally adjusted data, as follows:

̂log
(
CEp,SA

)
= ̂log(ESA) − log

(
Evol,SA

)
(18a)

ĈEp,SA = exp
[

̂log(ESA) − log(Evol, SA)
]
. (18b)

The patterns of the predicted carbon emissions prices in Figure 2a,b emulate the patterns described
in Figure 1a,b with significant upward movements in both the seasonally unadjusted and seasonally
adjusted data after mid-2017.

The correlation between l̂og(E) and ̂log(E)SA of 0.997 is given in Table 6, while the correlation
between the seasonally unadjusted and seasonally adjusted predicted carbon emissions prices of 0.992
is given in Table 7. It is clear that the forecasts of carbon emission prices are very similar, regardless of
whether seasonally unadjusted or seasonally adjusted data are used.
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Table 6. Correlation between l̂og(E) and ̂log(E)SA.

l̂og(E) ̂log(E)SA

l̂og(E) 1.000 0.997

l̂og(E)SA 0.997 1.000

Note: SA denotes seasonally adjusted values.

Table 7. Correlation between predicted carbon emissions price and predicted carbon emissions
price (SA).

ĈEp ĈEp,SA

ĈEp 1.000 0.992

ĈEp,SA 0.992 1.000

Note: SA denotes seasonally adjusted values.

8. Concluding Remarks

It is widely accepted in the international scientific and global communities that climate change
and global warming are significantly affected by carbon emissions that arise from the burning of fossil
fuels, specifically coal, oil, and gas. Although prices of fossil fuels are readily available, the prices of
carbon emissions arising from competitive markets for the product are not yet commercially available.

As carbon emissions can be taxed appropriately when accurate commercial market prices are
known and accepted at an international level, carbon emissions can be taxed appropriately for the
purposes of measuring, capturing, storing, and trading in carbon emissions at regional, national,
and international levels.

This paper used a novel KLEM production function approach to calculate the latent carbon
emission prices, where carbon emissions are regarded as the output and capital (K), labor (L), energy
(E) (or electricity), and materials (M), are the inputs for the production process. As the inputs K, L,
and M are essentially fixed on a monthly basis, whereas E can be changed daily, it follows that changes
in carbon emissions are functions of changes in E.

On the condition that prices depend on the average cost pricing, the prices of carbon emissions and
energy may be approximated by an energy production model with a constant factor of proportionality,
so that carbon emission prices will be a function of energy prices. Using this novel modeling approach,
this paper estimated carbon emission prices for Japan using seasonally adjusted and unadjusted monthly
data on the volumes of carbon emissions and energy, as well as energy prices, from December 2008 to
April 2018.

The novel methods presented in the paper are straightforward to understand and implement,
based on simple methods of estimation. The usefulness in establishing carbon emission prices goes to
the heart of tackling global warming and climate change.

The econometric models showed that, as sources of electricity, the logarithms of coal and oil,
though not LNG, are statistically significant in explaining the logarithm of carbon emissions, with oil
being more significant than coal. The models generally displayed a high power in predicting the latent
prices of carbon emissions. In particular, the forecasts of carbon emission prices were very similar,
regardless of whether seasonally unadjusted or seasonally adjusted data were used. The usefulness of
the empirical findings suggests that the methodology can also be applied for other countries where
carbon emission prices are latent.

The theoretical approach and empirical application developed in the paper should be useful for
purposes of public policy debate and decision making. Accurate predictions of the latent prices of
carbon emissions, and the imposition of appropriate environmental taxes, are essential in order to
mitigate the effect of carbon emissions on global warming and climate change.
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Appendix A

Appendix A.1 Derivation of Correct Standard Errors for Realized Latent Carbon Emissions and Ranking of
Important Underlying Factors

The novelty of the paper includes the development of innovative methods of analyzing latent
exogenous and endogenous variables. There has been little, if any, research undertaken on latent
variables, such as unobservable endogenous or exogenous variables, including rankings of the
importance of various factors in explaining the latent prices of carbon emissions.

An analysis of latent variables is such that the choice of important and influential explanatory
informational variables is typically arbitrary, that is, not based on any optimizing criterion. The final
rankings may be based on averaging aggregated using Pythagorean arithmetic, geometric, or harmonic
means. Consequently, any rankings based on arbitrary explanatory informational variables are
themselves arbitrary.

The purpose of this paper is to determine and forecast latent endogenous variables, in particular,
the latent prices for carbon emissions, and rankings using optimization methods, so that the rankings
will also be optimal. The extensive list of references applies technical methods to show how the
estimation and calculation of correct standard errors can be performed.

A wide range of alternative rankings include, but are not limited to the following:

(1) Academic rankings of individuals, departments, faculties/schools/colleges, institutions, states,
countries, and regions, which are of both academic and practical interest from individual students,
parents, and institutions, to public and private policy advisors (for robust methods of ranking
academic journals see, for example, [32–37] Chang and McAleer (2013, 2014a, 2014b, 2014c, 2015,
2016); [38–42] Chang, McAleer, and Oxley (2011a, 2011b, 2011c, 2011d, 2013); and [43] Chang,
Maasoumi and McAleer (2016));

(2) International rankings of universities, namely “Academic Ranking of World Universities (ARWU)”
by Shanghai Ranking Consultancy (originally compiled and issued by Shanghai Jiao Tong
University), “World University Rankings” by Times Higher Education (THE), and “QS World
University Rankings” by Quacquarelli Symonds (QS), are based on arbitrary measures.

Appendix A.2 Theoretical Structure for Latent Endogenous and Exogenous Variables

The fundamental ideas and theoretical structure underlying a critical analysis of latent exogenous
and latent endogenous variables can be presented in the following basic model, with extensions to
models involving more complicated decision strategies to be presented subsequently.

Suppose the true linear relationship between a dependent variable, or an endogenous variable
that is determined within the model, and a set of explanatory variables, that is, exogenous variables
that are determined outside the model, can be represented as

y∗t =
(
X∗t

)′
β+ εt, (A1)
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where t = 1, 2, 3, . . . n observations; y∗t is the latent endogenous variable; X∗t is a kx1 vector of
latent exogenous variables; the unknown parameter vector β is kx1; and et is an uncorrelated
and homoskedastic (or possibly an independently and identically distributed) random error term.
The parameter β in Equation (A1) cannot be estimated as y∗t and X∗t are not observable.

A standard approach to estimating β, calculating the in-sample estimates (that is, fitted values) of
y∗t , and forecasting out-of-sample values of y∗t , is to use proxy variables for both y∗t and X∗t . However,
the use of a proxy for X∗t will almost certainly lead to problems in estimation and sub-optimal statistical
properties of the associated estimators.

The use of proxy variables is called the problem of measurement error, which is inevitable
whenever latent variables are considered:

yt= y∗t + ut (A2)

Xt = X∗t + Vt (A3)

in which the proxy yt for y∗t in Equation (A2) is decomposed into two components, namely the latent
component, which is the true measure of yt, and a measurement error ut that is the difference between
yt and y∗t . Similarly, the proxy Xt for X∗t in Equation (A3) is decomposed into two components, namely
the latent component, which is the true measure of Xt, and a measurement error Vt that is the difference
between Xt and X∗t .

Such measurement error problems frequently arise in the social sciences, especially in economics
and finance, where X∗t may represent latent expectational, desired, perceived, equilibrium, or long-run
variables. Rankings across a wide range of academic disciplines are also typically based on using
a proxy for y∗t that depends on arbitrary rather than optimal measures, so that the rankings are arbitrary.

There are two approaches to trying to accommodate the problem of measurement error, namely
a primitive approach that includes the measurement errors, and an alternative approach that quarantines
and improves upon the incorporation of measurement errors.

Appendix A.2.1 Primitive Approach

Substituting y∗t = yt − ut and X∗t = Xt −Vt in (A1) leads to

yt = (Xt)
′β+

(
et + ut − (Vt)

′β
)
, (A4)

where
(
et + ut − (Vt)

′β
)

is the composite error arising from Equations (A1)–(A3).
In Equation (A4), β can be estimated by OLS, as both yt and Xt are measurable, to obtain the

in-sample estimated or fitted values, represented by “hat” (or circumflex) of yt, as follows:

ŷt = ŷ∗t = (Xt)′β̂, (A5)

where ŷt is the fitted value of both yt and y∗t , which follows from (A2), and β̂ is the OLS estimate of
β. Equation (A5) can be used to calculate the in-sample fitted values of y∗t or forecast out-of-sample
values of y∗t .

It is well-known that the OLS estimate of β is biased, inconsistent, and inefficient as Xt in (A4) is
correlated with Vt in the composite error. However, this does not mean that out-of-sample forecasts
based on ŷt will be inaccurate in comparison with forecasts obtained from using an alternative
consistent estimator of β. This is also well-known, but does not seem to have been applied to the
issue of computing and forecasting latent endogenous variables, such as carbon emission prices and
important ranking factors.
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Appendix A.2.2 Generated Regressors and Realized Latents

The second approach is more sophisticated mathematically and statistically, and leads to consistent
and efficient estimators of β by reducing the impact of informational ignorance in the presence of latent
exogenous and endogenous variables. Returning to Equation (A1), the substitution of yt for y∗t gives

yt =
(
X∗t

)′
β+ (et + ut), (A6)

in which it is reasonably assumed that X∗t is not correlated with et or ut, the random errors in y∗t and
yt, respectively. The parameter β cannot be estimated in Equation (A6) as X∗t is a latent exogenous
variable, even though yt is observed.

Rather than simply replacing X∗t with a proxy variable such as Xt, in economics, it is frequently
assumed that the latent X∗t depends on a vector of observable variables Zt, as follows:

X∗t = (Zt)′C, (A7)

where Zt is gx1, and the unknown matrix of parameters C is gxk.
What is quite remarkable about Equation (A7) is that a latent exogenous variable, X∗t , which is

unmeasurable for all n observations on k variables, is now given as a function of n measurable
observations on g variables in Zt and g unknown in C.

The assumption based on (A7) effectively reduces the ignorance and lack of informational content
from n latent observations in X∗t to g unknown parameters in C.

Using the definition of Xt in Equation (A3) and the assumption for X∗t in Equation (A7) gives

Xt = (Zt)
′C + Vt. (A8)

As both Xt and Zt are measurable, the OLS estimation of C in Equation (A8) leads to

Ĉ =
[
(Z′Z)−1

]
Z′X, (A9)

which gives an estimate in Equation (A10) of the latent variable X∗t , X̂∗t , based on estimating Xt in
Equation (A8) and Ĉ from Equation (A9):

X̂t = X̂∗t = (Zt)
′ Ĉ. (A10)

Equation (A8) is the foundation of the “rational expectations” literature in economics as X̂t = X̂∗t
in Equation (A10) is used as a “rational” (or, more accurately, a model-consistent) estimate of the latent
exogenous variable, X∗t . X̂t is called a “generated (or realized) regressor” as it can be used to replace the
latent X∗t to estimate yt and y∗t . Returning to Equation (A6), the substitution of X̂∗t = (Zt)

′ Ĉ for X∗t gives

yt = (̂X∗t)
′

β+
(
et + ut +

(
X∗t − X̂∗t

)′
β
)
. (A11)

The substitution of X∗t from Equation (7), Ĉ from Equation (9), and X̂∗t from Equation (10),
in Equation (11), leads to

yt = (̂X∗t)
′

β+
(
et + ut −

[
(Zt)

′
(
Z′tZt

)−1
Z′tVt

]′
β
)
, (A12)

in which X̂∗t is an observable generated regressor.
As X̂∗t is uncorrelated with each of the components in the combined error in Equation (A12),

namely et, ut, and
[
(Zt)

′
(
Z′tZt

)−1
Z′tVt

]′
β, it follows that the OLS estimation of β by regressing yt on X̂∗t

is unbiased.
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Calculation of the correct standard errors for statistical inference to be valid is dependent on using
the correct error structure in Equation (A12), as given in Equation (A13):(

et + ut −

[
(Zt)

′
(
Z′tZt

)−1
Z′tVt

]′
β
)

(A13)

which is based on the composite error term
(
et + ut − (Vt)

′β
)

in Equation (A4), rather than on et alone.
Using the incorrect standard errors from the OLS estimation of Equation (A12) based on et rather

than on the composite error in Equation (A13) will lead to standard errors that are biased downward
as the variance of (

ut − (Vt)
′β

)
= ut −

[
(Zt)

′
(
Z′tZt

)−1
Z′tVt

]′
β (A14)

is positively definite. Therefore, the calculated t-ratios will be biased upward, thereby incorrectly
leading to findings of spurious statistical significance.

An alternative approach to calculating the correct standard errors based on the OLS estimation of
Equation (A12) when ut = 0, that is, when only the exogenous regressors are latent, is to incorporate
the [44] Newey and West (1987) Heteroskedasticity and AutoCorrelation (HAC) consistent covariance
matrix estimator. [45] Smith and McAleer (1994) have shown that the HAC covariance matrix estimator
is reasonably accurate for purposes of drawing inferences in finite samples in the presence of generated
regressors. The finite sample properties of the OLS estimation of Equation (A12) when ut = 0 does not
hold, that is, when the endogenous variable is latent, remains a topic for future research.

Moreover, using the necessary and sufficient Rao–Zyskind condition (also sometimes referred
to as Kruskal’s Theorem) for OLS to be efficient (see [46] McAleer, 1992), the OLS estimator of β in
Equation (A12) can be shown to be efficient, and hence to enable valid statistical inference (for further
details see, for example, [47] Pagan (1984), [48–51] McAleer and McKenzie (1991, 1992, 1994, 1997),
and [52] Fiebig et al. (1992)).

Using the OLS estimate of β from Equation (A12) will provide in-sample fitted values of yt and
out-of-sample forecasts of yt, and hence of y∗t . The fitted values of yt are ŷt = ŷ∗t , which are “realized
latents” as they are the fitted or realized in-sample values of the latent variable y∗t in Equation (A1),
and the realized out-of-sample forecasts of y∗t .

The rankings literature provides a novel example of how it is possible to estimate true latent
rankings, y∗t , using realized latent rankings, ŷ∗t , that are obtained from generated (or realized) regressors
and observed rankings, yt, which are subject to measurement error. The realized latent rankings can
also be used to obtain out-of-sample forecasts.

Appendix A.3 Extensions to More Complicated Decision Strategies

The presentation of the basic model concentrated on developing a theoretical approach and
structure to generate univariate “realized latent rankings” for unobservable latent endogenous
variables, and establishing the theoretical properties of the new measures, as well as of the associated
parametric estimators.

Generated regressors and realized latents can be applied to obtain measurable and optimal
rankings of any latent endogenous variables, with interesting and challenging extensions to a wide
range of models arising from more complicated and sophisticated decision strategies.

The development of innovative methods of analyzing latent endogenous variables can be extended
to the following topical and practical issues:

(i) Extending “realized latent rankings” to multivariate unobserved latent endogenous variables,
and establishing the theoretical properties of the new measures, as well as of the associated
parametric estimators, using extensions of the technical developments in the basic model.
These could include structural models, recursive models, and probabilistic models;
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(ii) OLS is the simplest technique that can be employed to obtain optimal weights through
estimation, but it is possible to use Logistic regression to obtain optimal weights and the
inherent associated probabilities;

(iii) In the context of Cognitive Computing, it is widely argued that computers, computing facilities,
machine hardware, mathematical algorithms, and computer software should be perceived as aids
to learn dynamically, to reach managerial decisions, and to achieve strategic aims;

(iv) As advanced machines can be programmed to learn through feedback, an important implication
is that the outputs obtained from inputs and processing systems are not the same if learning is
allowed because the outputs can differ. Consequently, outputs from such processing systems
should be modeled and analyzed in a probabilistic context which, in turn, helps to make
managerial decisions.

The cognitive approach is precisely related to realized latent rankings models, in which the
probabilistic outputs, namely realized rankings, can change dynamically according to the generated
(or realized) regressors and dynamic learning. Therefore, the probabilities would assist in strategic
management decision making.

Conditional on the sets of features (such as the latent endogenous variable, and measurable or
latent exogenous variables), the model can provide different realized latencies, such as latent carbon
emission prices, which can assist management in making optimal decisions. It is assumed in latent
probabilistic models that the exogenous regressors are measurable, such as

y∗ = X′β+ e, (A15)

where y* in Equation (A15) is latent, but we observe a binary variable y that takes the value of 1 or 0,
according to whether or not y* crosses a threshold, that is, y = 1 if y* > 0, and 0 otherwise.

The probabilistic model is given by

P(y = 1
∣∣∣ x) = P(y∗ > 0) = P(−e < X′β) = F(X′β) (A16)

where F in Equation (A16) is typically a normal or logistic cumulative distribution function (CDF).
Then, y* is given in Equation (A17) by

y∗ = F
(
X′β̂

)
. (A17)

The model and associated analysis change drastically if the basic latent regression model is
changed to incorporate X*, as in Equation (A18), rather than X in Equation (A15):

y∗ = X∗′β+ e (A18)

as an appropriate model would be required for X* to obtain generate regressors for X* and realized
latencies for y*.

Such an extension of logistic probabilistic models to incorporate latent exogenous variables to
estimate and forecast latent endogenous variables is a novel extension of the classical latent probabilistic
model, and can be analyzed as follows:

(v) Defining and measuring a wide range of latent variables, such as unknown carbon emission
prices and academic quality; ranking individuals, departments, faculties, and institutions based
on the new measure; and establishing the theoretical properties of the new measures, as well as
the associated parametric estimators;

(vi) Ranking individuals, departments, faculties and institutions based on non-academic measures,
and establishing the theoretical properties of the new measures, as well as of the associated
parametric estimators;
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(vii) Applying the approach based on “realized latent rankings” commercially to any decision making
strategies in business, using structural models; multiple decision making based on recursive
models, that is, sequential decision making; and strategic decision making using probabilistic
models, among others.

For example, if y∗1 and X∗1 are latent endogenous and exogenous variables, respectively, in stage
1 of a decision making process, the model may capture sequential decision making in Equations
(A19)–(A21), as follows:

y∗1 = X∗1
′β1 + e1; (A19)

y∗2 = X∗2
′β2 + c1 ŷ∗1 + e2; (A20)

y∗3 = X∗3
′β3 + c2 ŷ∗2 + e3. (A21)

where y∗1 in Equation (A20) is obtained at the first stage from Equation (A19), y∗2 in Equation (A21) is
obtained at the second stage from Equation (A20), and so on.

It is clear that sequential models will be necessary to obtain “sequential generated regressors”,
and subsequent “sequential realized latencies”, which would present challenging and novel theoretical
and practical developments. The approach given above could also be extended to probabilistic models,
which would be an entirely new and innovative development.

Each of the points stated above is novel from theoretical and practical perspectives, namely
applications of generated regressors and realized latents to obtain measurable and optimal rankings of
any latent endogenous variables, and extensions to a wide range of more complicated models and
decision strategies. The techniques of the basic model presented above can be extended, and are
portable to different problems and disciplines, such as latent carbon emission prices, rankings of
important factors, and associated management decisions.
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